Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001 ## Energy level crossing and high-field magnetization in HoVO₄ Osamu Suzuki¹, Hideaki Kitazawa¹, Hideki Abe¹, Naohito Tsujii¹, Takehito Washizawa², Yuichi Nemoto², Terutaka Goto², Giyuu Kido¹ - ¹ National Research Institute for Metals, 3-13 Sakura, Tsukuba 305-0003, Japan - ² Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan The magnetic properties of the tetragonal rare-earth zircon HoVO₄ with crystal-field singlet ground state have been investigated by magnetic susceptibility and high-field magnetization measurements up to 28 T using the hybrid magnet at NRIM. Magnetic susceptibility of the single crystal HoVO₄ shows quite anisotropic behavior for the easy ab-plane and the hard c-axis. Temperature dependence of the magnetic susceptibility shows Van Vleck behavior in lower temperatures than the first excited energy of 30K. Magnetization process along the [001] axis shows an abrupt increase more than 8 μ_B at 11.5 T. This enormous magnetization jump is explained in terms of the level crossing effect between the non-magnetic ground state and the excited one which include mainly $J_z = -7$. Magnetization along the [110]-and [100]-axes increase gradually because the level crossing is not expected in these field directions. Temperature dependence and magnetization process along the three principal axes are well reproduced by crystal-field level previously reported.